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Unlocking Determinants



Exercise 4.1 

This exercise focuses on evaluating determinants. 

Question Breakdown:

• Q1 to Q3:  2×2 matrices — Evaluate the Determinant

• Q4 to Q6: 3×3 matrices — Evaluate the Determinant

• Q7 & Q8:  2×2 matrices — Find the value of x



What is a Determinant

• The determinant is a number calculated from a square matrix (like 2×2, 

3×3, etc.). 

• It's denoted as |A| or det(A) for a matrix A.

How to Evaluate it.

• For a 2×2 Matrix, use a simple formula:- a1 b2 – a2 b1 

• For 3×3 Matrix, expand along the first row using co-factors. This involves 

applying the 2×2 rule three times.

Why It Matters

• If det(A) ≠ 0, the matrix has an inverse.

• If det(A) = 0, it is singular — meaning the system of equations it 

represents has no unique solution or infinitely many.



Square Matrix Only!

• Only square matrices have determinants.

• Rectangular matrices (e.g., 2×3) do not have determinants.

• ✓ Valid: 2×2, 3×3, 4×4

• ✗ Invalid: 2×3, 3×4

What is a square matrix:- 

One which have same number of rows and columns like 2×2, 3×3

What is a Rectangle matrix:- 

One which have different number of rows and columns like 2×3, 3×1, 2×1



Evaluate the determinants of the Matrix A = 
a1 a2

b1 b2

Determinant of the Matrix A would be determined by the 

following formulae:-

= a1 b2 – a2 b1 

How to Calculate it For 2×2 Matrix

a1  
a2

b1  
b2
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EXAMPLE:-

|A| =
5  2

1  7
 = 5 × 7 – 1 × 2  = 33

|A| =
5  3

1  6
 = 5 × 6 – 1 × 3  = 27

|A| =
5  2

0  7
 = 5 × 7 – 0 × 2  = 35
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Let ’s Start the Exercise 4.1



Q1: Evaluate the determinants 

2 4

−5 −1

Answer:

2 4

−5 −1

= 2(−1)−4(−5)

=−2+20 

=18

Using a1 b2 – a2 b1 



Q2: Evaluate the determinant

(i) 
Cosθ −Sinθ
Sinθ  Cosθ

Answer:
Cosθ −Sinθ
Sinθ  Cosθ

 =(Cosθ)(Cosθ)−(−Sinθ)(Sinθ)

=Cos2θ+Sin2θ

=1



(ii) x2−x+1 x−1

x+1 x+1

x2−x+1 x−1

x+1 x+1
 

= (x2−x+1)(x+1)−(x−1)(x+1)

= x3−x2+x+x2−x+1−(x2−1)

= x3+1−x2+1 

= x3−x2+2



Q3:  If A=
1 2
4 2

,then show that |2A| = 4|A|

Answer:- The given matrix is A = 
1 2
4 2

∴ 2A = 2
1 2
4 2

 = 
2 4
8 4

∴ L.H.S. = |2A| = 
2 4
8 4

 = 2 x 4 - 4 x 8   = 8 – 32   = - 24

 Now, |A|= 
1 2
4 2

 = 1 x 2 – 2 x 4    = 2 – 8    = -6

∴ R.H.S. = 4|A|   = 4 x (-6)   = -24

∴ R.H.S. = L.H.S.

• |2A| means first 

multiplying the 

matrix with 2 and 

then finding the 

determinant.

• 4|A|means first 

finding the 

determinant and 

then multiplying it 

with 4
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How to Calculate it For a 3 × 3 Matrice.

• Expand along the first row (common method).

• Use minors and cofactors.

• Choose a row/column with more zeros for simplicity.

• You’ll get the same result from expanding any row or column.



is a square matrix of order 3, then

𝐚𝟏𝟏 𝐚𝟏𝟐 𝐚𝟏𝟑

𝐚𝟐𝟏 𝐚𝟐𝟐 𝐚𝟐𝟑

𝐚𝟑𝟏 𝐚𝟑𝟐 𝐚𝟑𝟑

[Expanding along first row]

|𝐀| = 𝐚𝟏𝟏

𝐚𝟐𝟐 𝐚𝟐𝟑

𝐚𝟑𝟐 𝐚𝟑𝟑
− 𝐚𝟏𝟐

𝐚𝟐𝟏 𝐚𝟐𝟑

𝐚𝟑𝟏 𝐚𝟑𝟑
+ 𝐚𝟏𝟑

𝐚𝟐𝟏 𝐚𝟐𝟐

𝐚𝟑𝟏 𝐚𝟑𝟐

= 𝐚𝟏𝟏 𝐚𝟐𝟐𝐚𝟑𝟑 − 𝐚𝟑𝟐𝐚𝟐𝟑  − 𝐚𝟏𝟐 𝐚𝟐𝟏𝐚𝟑𝟑 − 𝐚𝟑𝟏𝐚𝟐𝟑  + 𝐚𝟏𝟑 𝐚𝟐𝟏𝐚𝟑𝟐 − 𝐚𝟑𝟏𝐚𝟐𝟐

If A 

By removing the 

row and column in 

which a11 exists.

By removing the 

row and column in 

which a12 exists.

By removing the 

row and column in 

which a13 exists.



|𝐀| = 𝐚𝟏𝟏

𝐚𝟐𝟐 𝐚𝟐𝟑

𝐚𝟑𝟐 𝐚𝟑𝟑
− 𝐚𝟏𝟐

𝐚𝟐𝟏 𝐚𝟐𝟑

𝐚𝟑𝟏 𝐚𝟑𝟑
+ 𝐚𝟏𝟑

𝐚𝟐𝟏 𝐚𝟐𝟐

𝐚𝟑𝟏 𝐚𝟑𝟐

• 𝐚𝟏𝟏 , 𝐚𝟏𝟐, 𝐚𝟏𝟑 are called the Cofactors and 

• The cofactor will have a – sign if the sum of i+j =odd

• 𝐚𝟏𝟏, i+j  = 1+1, the sum is even, 2 - so have a positive sign. 

• 𝐚𝟏𝟐 , i+j = 1+2, the sum is odd, 3 - so have a negative sign. 

• That means while expanding along Row 1

𝐚𝟏𝟏 , 𝐚𝟏𝟐, 𝐚𝟏𝟑 (𝐚𝟏𝟐 will have negative sign)

• That means while expanding along Row 2

𝐚𝟐𝟏 , 𝐚𝟐𝟐, 𝐚𝟐𝟑 (𝐚𝟐𝟏 , 𝐚𝟐𝟑 will have negative sign)

• That means while expanding along Row 3

𝐚𝟑𝟏 , 𝐚𝟑𝟐, 𝐚𝟑𝟑 (𝐚𝟑𝟐 will have negative sign)

+ − +
− + −
− − +



Do we get the same value of Determinant if we expand through any 

other row or any other column?

• Yes, that's a fundamental property of determinants. We will obtain the same value 

regardless of which row or column, we use for the expansion.

•  

• This provides flexibility in calculating determinants, allowing us to choose rows 

or columns with more zeros to simplify the calculation.  

• For example, in Q4 of exercise 4.1 we will expand along first column as it has the 

maximum zero.



Let’s, Find the value of Determinant for a 3 × 3 Matrix 

with real values. 



Q4: If A = 
1 0 1
0 1 2
0 0 4

,  then show that |3A| = 27|A|.

Answer:- The given matrix is A= 
1 0 1
0 1 2
0 0 4

It can be observed that in the first column, two entries are zero. Thus , we 

expand along the first column (C1) for easier calculation.

|A|= 1
1 2
0 4

-0
0 1
0 4

+0
0 1
1 2

 = 1 (4-0) – 0 + 0 = 4

∴ 27|A| = 27(4) = 108           …(i)



Now, 3A = 3
1 0 1
0 1 2
0 0 4

=
3 0 3
0 3 6
0 0 12

∴ |3A| = 3
3 6
0 12

 -0
0 3
0 12

 +0
0 3
3 6

= 3(36-0) 

= 3(36) 

= 108        …(ii)

From equations (i) and (ii), we have :

|3A| = 27|A|

Hence, the given result is proved. 



Q5: Evaluate the determinants 

(i) 
3 −1 −2

0 0 −1

3 −5 0

Answer:- (i) Let A = 
3 −1 −2

1 1 −2

2 3 1

It can be observed that in the second row, two entries are zero, thus 

we expand along the second row for easier calculation 

|A|= -0
−1 −2

−5 0
 +0

3 −2

3 0
 -(-1)

3 −1

3 −5
 

= (-15+3) 

= -12



(ii) 
0 1 2

−1 0 −3

−2 3 0

(ii) Let A = 
3 −4 5

1 1 −2

3 3 1

By expanding along the first row, we have:

|A|= 3
1 −2

3 1
 +4 

1 −2

2 1
 +5 

1 1

2 3

= 3(1+6)+4(1+4)+5(3-2)

= 3(7)+4(5)+5(1)

=21+20+5= 46



(iii) 
3 −4 5

1 1 −2

2 3 1

Let A=
0 1 2

−1 0 −3

−2 3 0

By expanding along the first row, we have:

|A|= 0 
0 −3

3 0
 -1

−1 −3

−2 0
 +2

−1 0

−2 −3
 

= 0-1(0-6)+2(-3-0)

=-1(-6)+2(-3)

=6-6=0



(iv) 
2 −1 −2

0 2 −1

3 −5 0

(iv) Let A= 
2 −1 −2

0 2 −1

3 −5 0

By expanding along the first row, we have:

|A|= 2 
2 −1

−5 0
-0 

−1 −2

−5 0
+3 

−1 −2

2 −1

= 2(0-5)-0+3(1+4)

= -10+15=5



Q6: If A= 
1 1 −2

2 1 −3

4 4 −9

, find |A|.

Answer Let A =
1 1 −2

2 1 −3

4 4 −9

By expanding along the first row, we have:

|A|= 1 
1 −3

4 −9
-1 

2 −3

5 −9
-2 

2 1

5 4

=1(-9+12)-1(-18+15)-2(8-5)

=1(3)-1(-3)-2(3)

= 3+3-6

=6-6

=0



Q7: Find values of 𝑥, if 

 (i) 
2 4

2 1
= 

2x 4

6 x
 

Answer:- (i) 
2 4

5 1
= 

2x 4

6 x

⇒ (2 x 1)- (5 x 4) = (2𝑥) x (𝑥) – (6 x 4)

⇒ 2-20 = 2x2- 24

⇒ 2x2 = 6

⇒ x2 = 3

⇒ 𝑥 = ±√3



(ii) 
2 3

4 5
= 

x 3

2x 5

2 3

4 5
= 

x 3

2x 5

⇒ (2 x 5) – (3 x 4) = (𝑥 x 5) – 3 x 2 𝑥

⇒10-12 = 5 𝑥 -6

⇒ -2 = - 𝑥

⇒ 𝑥 = 2



Q8:If 
x 2

18 x
= 

6 2

18 6
, 

then 𝑥 is equal to

(A) 6 (B) ±6 (C) -6 (D) 0

Answer: B
x 2

18 x
=

6 2

18 6
⟹x2-36=36-36

⟹x2-36=0

⟹x2=36

⟹ 𝑥 = ±6

Hence, the correct answer is B.



Useful Properties of Determinants

• |kA| = kⁿ × |A| (for n × n matrix)

• |AB| = |A| × |B|

• |Aᵗ| = |A| (Transpose doesn't change the determinant)
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